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Effect of spatial reflection symmetry on the distribution of the parametric conductance derivative
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We study the effect of left-right symmetry on the distribution of the parametric derivative of the dimension-
less conductanc€ with respect to an external paramekerdT/ X, of ballistic chaotic cavities with two leads,
each supporting)l propagating modes. We show tifaanddT/ X are linearly uncorrelated for afly. ForN=1
we calculate the distribution ofT/dX in the presence and absence of time-reversal invariance. In both cases,
it has a logarithmic singularity at zero derivative and algebraic tails with an exponent different from the one of
the asymmetric case. We also obtain explicit analytical results for the mean and variance of the distribution of
JdT1 X for arbitrary N. Numerical simulations are performed fbh=5 and 10 to show that the distribution
P(4T/4X) tends towards a Gaussian one wiimcreases.
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[. INTRODUCTION However, no theoretical results exist for the distribution of
the conductance velocities. The purpose of this paper is to
In recent years there has been great interest in cohereftudy the effect of the spatial left-right symmetry in the dis-
quantum transport in mesoscopic devices in both experimeﬁ[ibution of the parametric derivative of the conductance.
and theory(for a review, see, Refl]). In quantum systems Thus we consider a chaotic left-right symmetric cavity con-
whose classical dynamics is chaotic, phase coherence af@cted to two symmetrically located leads for two different
quantum interference give rise to sample-to-sample fluctusSymmetries, with and without TRI, in the absence of an ap-
tions in most transport properties with respect to small perplied magnetic field24]. Other spatial symmetrieigt] are
turbations in incident energy, cavity shape, or an externahot considered.
parameter such as an applied magnetic field. Therefore a When TRI is broken by a magnetic field the problem of
statistical analysis by random-matrix thedBMT) becomes  left-right symmetric cavities is mapped to the one of asym-
applicable; the details of the problem being irrelevant, emMmetric cavities in the presence of TRI. That problem was
phasis must be put on universal aspects such as the symnfgudied by Brouweret al. [19] using an RMT method to
tries of the system. Then, time-reversal invariatiERl) and calculate analytically the joint distribution of the dimension-
Spin-rotationa| SymmetrieﬁZ], or the Spatia| Symmetries less conductancé& and its velocitiesiT/dV,dT/ dX, with re-
present in the system, characterize their universal statistic€ct to the gate voltagé and a external parametsr(typi-
[3-6]. cally a magnetic fielg for a quantum dot with two single-
Some experiments concerned the parametric dependengode point contacts. The statistical distributid&T/ V),
of the conductance study ballistic quantum dots connecte®(JT/JX) show algebraic tails, and in the absefipeesence
by leads with few propagating modes to electron reservoirspf TRI they have a cusgdivergence at zero velocity, and
as happens in semiconductor systdms11. The conduc- the second moment is finiténfinite). RMT predictions have
tance is measured as a function of the magnetic field and tHeeen verified by experimental resuftsl].
shape of the quantum détontrolled by gate voltagesThe In the present work we perform analytical calculations for
derivative of the conductance with respect to an external pathe one channel case to reduce to quadratures the distribu-
rameter, which is analogous to the level veloditp—15 of  tions of JT/JE, and the derivative/T/dX with respect to an
the dot, is a very important quantity that gives us the re-external parametef (shape deformation parameter in micro-
sponse of a mesoscopic sample to a small perturbation. Onlyave cavities using a scattering matrix formalism. By di-
the asymmetrical situation has been considered in the liter&ect numerical integration we obtaiR(dT/JE),P(JT/X).
ture using an RMT approadi1,16-19. Analytically, we obtain their mean and variance and show
Other methods to verify RMT predictions are given by also thatT,dT/JE,dT/dX are linearly uncorrelated for any
wave scattering experiments, such as microwd\zés-22 number of channels. Besides, we obtR{#T/JE) , P(dT/IX)
and acoustic resonatdra3]. In the microwave technique, for by numerical simulations using a scattering matrix.
example, the conductance is measured as a function of the The formal elements such as the scattering matrix for the
frequency of incidence, applied magnetic field, and cavitysymmetric case, its energy, and parametric derivatives are
shape. introduced in the next section, as well as the joint distribu-
In these wave scattering experiments the external paranion of them, for an arbitrary number of propagating modes
eters are easier to control. The symmetric case can be coitin the leads. Thé&=1 case is the subject of Sec. Il A for
structed to analyze the strong effects of spatial symmetrieboth in the presence and absence of TRI. Section IlI B is
on the conductance, predicted by RNI3-5]. Experiments dedicated to an arbitrafy case. Finally, the conclusions are
have been conducted on left-right symmetric cavifi2g]. presented in Sec. IV.
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symmetrig for =2 (1) generate the most general X 2N
unitary (and symmetrig S matrix with the structurel):

Sg = }IZN! for B =2, (8)

S=8", forB=1. )

7 ~ When the classical dynamics of the system is chaaotic,

most transport properties are sample specific and a statistical
FIG. 1. Aballistic_chaotic left-right symmetric cavity connected analysis of the quantum-mechanical problem is called for.
to two leads supporting one channel each. That analysis is performed by the construction of ensembles
of physical systems, described mathematically by ensembles
Il. CHAOTIC SCATTERING BY REFLECTION of Smatrices distributed according to a probability law. The
SYMMETRIC CAVITIES starting point is a uniform distribution where the scattering
matrix is a member of one of th@rcular ensemblesdefined
by theinvariant measuravhich is the precise formulation of
the intuitive notion ofequal a priori probabilitiesin the
space of scattering matrices. In our c&endS, are inde-
pendent of each other, statistically uncorrelated, and distrib-
uted according to the invariant measure defined by

The scattering problem of a ballistic cavity with left-right
(LR) symmetry connected to two leads, each withrans-
verse propagating modes, is described by tNex2N scat-
tering matrixS, which in the stationary case relates the am-
plitudes of the outgoing to the incoming plane way2s].
For a system with reflection symmetigee Fig. 1 the S
matrix is block diagonal in a basis of definite parity with

respect to reflections. The general structureSas [4] du'®(S) =du®(UeSVy), (j=1,2. (10)
S= (r t>, (1) Here, Uy, V, are arbitrary but fixed unitary matrices fgr
tr =2, whileVy=U]{ for B=1. Equation(10) defines the circular

wherer, t are theN X N reflection and transmission matrices. Erii)taErzyﬂ(orthogona] ensemble, CURCOB), for p=2 (5

The transmission coefficient, or spinless dimensionless , . )
conductance, is obtained from tSematrix, Then, the invariant measure f& with the structure(l)

can be written a§3,4]

T=tr(tt"); 2
it is proportional to the conductance of the cavity, di (9 = duP(SPdu'P(S)). (11
G=(e¥h)T. (3) S matrices of the form given by Eql), which satisfy Eq.

. . (8) are appropriate for systems with reflection symmetry in
Matrices with the structurél) can be brought to the the absence of TRI. With the additional conditit®) it is

block-diagonal form, appropriate for LR systems in the presence of TRI. However,
S, when TRI is broken by a uniform magnetic field, the prob-
S= RE( )RO , (4) lem of LR-symmetric cavities is mapped to one of asymmet-
0 S ric cavities[4] with =1 with t replaced byr. We are inter-
whereR, is the rotation matrix, ested in the case when TRI is not broken by a magnetic field
[24]. Other spatial symmetrieg4] will not be considered
1 Iy g here
T\-1y 1y 5) The parametric derivative d§ (j=1,2) with respect to
the energy of incidence can be defined in terms of a symme-
I denotes ther X n unit matrix, and trized form of the Wigner-Smith time delay matrix, whose
r=(S,+S)/2 (6) eigenvalues are also the proper delay times. The derivative of
' Swith respect to another external parame{as defined in a
t=(S,-S)I2. 7) similar way. We havg28|
Here,S,=r+t,S,=r -t are the most gener&l X N scattering S S
matrices. —=i5”Qe s —=is”Qxs% (12
In the absence of any symmetry the condition of flux JE X

conservation implies unitarity fo§ (j=1,2): QQT:}IN. In

Dyson’s schemg26] this case is called “unitary” and it is Qjg,Qjx are NX N Hermitian matrices foi3=2, real sym-
designated by3=2. In addition, in the presence of time re- metric for 3=1. The eigenvalues o;e are £~ times the
versal invariance§ is symmetric:S,:SJT. This is the “or-  proper delay times.

thogonal” case, designated s 1. It means that two inde- For classically chaotic cavities the joint distribution of
pendent NXN scattering matricesS;,S, unitary (and  S,Qje,Qjx is [28]
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PIP(S,Qie. Q) and 4T/ X, when the leads support one propagating mode.
For N=1 the S matrix is 2x2 and §=€% (j=1,2) is
o (deQE)‘ZBN‘?’(l‘E’Z)exp{—,8 tr{zQ-El uniformly distributed in the unit circle, i.e.du'®(S)
: AT =d¢,/2m; Sis distributed as Eq(12),
+ 7T—xﬁQ.‘lQ. i (13) d6,dé,
o IENX) [ da'P(9=—-=2-=. (20
2m 2
whereA is the mean level spacing, axg is a typical scale o o
for X which is not a universal quantit$ is independent of The transmission coefficient is
Qje and Qjx and it is uniformly distributed in the space of
scattering ma.ltric.es,. i.e., according to the invaria_nt measure T= 3[1 - cog6, - 6,)], (21)
du'P(S). Qi is distributed as a Gaussian with a width set by 2
Qie- The rates{xjnzllrjn} (n=1,...,N), where the dimen- o
sionless time delay*jn is A/27r times thenth eigenvalue of whose probability distribution is given K]
Qje, are distributed according to the Laguerre ensemble, 1
namely[28] Wy(T) = ——, (22
SR T

Ps({x; }) = I1 |Xja_ ij|’81_[ XJ-BC’\UZ(?_’BXI'c/2 . (14)
a<b c

For N=1 it reproduces the result of Refd.6,18,29.

Let denote byq any of the two parameterg or X. A
convenient parametrization f& anddS/dq (q=E, X) is

_ 95 _.
S=U}V,, P =i Uijqu, (15)

whereU;, V; are the most general X N unitary matrices for
B=2, whileV;=U] for g=1.

We parametrizé;x andQ;z as[28]

1 _
Q=3 Y] KWt (16)
B

2T g
Qe = X\P]‘ qu’j g (17)

whereK; is aN X N Hermitian matrix for3=2, real symmet-

ric for B=1, that have a Gaussian distribution with zero

mean and variance,

4 5ad5t)c ﬁ =2

, (18
4( 5ad5bc+ 5ac5bd) B =1

<(Kj)ab(Kj)cd> = {

as can be seen by substitution of E(6) and(17) into Eq.

(13). ¥ is aN X N matrix, complex in the unitary case, real

in the orthogonal one. We defirtig:\Ifj‘lT‘lfj‘l and diagonal-
ize it,

Q= WymW]. (19
The reciprocals of the eigenvalugs,} of ;J are distributed
according to Eq(14). The matrix of eigenvectors§y, is uni-
formly distributed in the unitary(orthogonal group for 8
=2 (B=1).

Ill. PARAMETRIC CONDUCTANCE VELOCITY
DISTRIBUTIONS

A. N=1 Case

for any 8.
The partial derivative with respect to the external param-
eterq (q=E, X) is

aT 1 a6, 502)
—=zsinOy—0)| ——— | 23
2 (6 2)( a9 aq (23
from Eq.(21) we rewrite the last equation as
1 aT (96, 6
L (o),
oNT(1-T)dq Jq dq

where o=+1 depending on the phases of thxl S;,S,

matrices, 6;, 6,. A similar expression to Eq24) holds for

asymmetric cavitief19] wheredT/JE depends ol but the

ratio (dT/9E)/ T(1-T) is independent of. However,T is

linearly uncorrelated witiT/dq (q=E, X) (see Sec. Il B.
We write Eq.(23) as

it _ 27y
— = 6,—6,), 25
P 2sm( 1= 6) (25
where we have defined
_96 96, (26)
gq a9

From Eq.(12), 96,/ JE=1;. In a similar way we denote by
pJ=0BJ/&X Then,

Ze=T =Ty, Zx=p1~ P2 (27)

The setd6,,1,p1), (62, 72,p,) are statistically independent,
while the joint distribution of;, 7, p; (j=1,2) is[Eq. (13)]
ag a?X? p<2
(B = ~3-pI2 - BB
P”(6;,7;,p5) = Cgr, exp( Tj + 48 712) (28)

where az=gm/A, Cp=aly#?Xs12\prT(1+p/2), and

In this section we calculate the distributions of the partiall'(x) is the gamma function.

derivatives of the dimensionless conductance, namelyE

The distribution ofdT/dq (q=E, X) is
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2 2 o
dﬁlf dazf ,
PyaTloq= | —=| 2| dzp
4(T190) fo 2n), 27l 7P (zg)

0.8
aT 7y . =)
X 8 — - 0,—0,) |, 29 3 06
[ERE
. - t0.4
which can be written as
0.2
2 (" 2 9T\ dé ;
Pﬁ(aT/ﬁQ):_f Pg(.——).—, (30 0 -
mJo sin#dq/ |sin 6| (@) AITIE
or, equivalently,
8 (~ Pi(z,)
P4(aT/oq) = — f —L£%___dz, (31
g ™) 2l N7 = AdTI90)? “

where
27 o0 o
de
P'p(zq) = f o f dry f dpsPF(61,71,p)
0 T™Jo -

e (T (T
X o dry | dpaP3”(65,72,p2)
0o <TJo —o0
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[

P(XydT/dX)

n 1
-1 -0.5 0 0.5 1

FIG. 2. Distribution of(a) AdT/JE and (b) XzdT/dX for the
symmetries3=1,2,obtained by numerical integrations of E¢33)

X dzq-(&- &), (32)  and(34).

with é=7 or p. Using Eq.(28) we see that the integrations Pa(aT/IX)
with respect tod,, 6, are equal to 1. For the particular case of

Ps(dT/JE) the p variables are easily integrated, as well as -B j ' dx(l ‘X)(l+ﬁ/2)e—aﬁ(1—x)/x

one of ther variables, say-, due to the delta function factor, £, x(2+B12)

thus only remaining to be done the integral with respect to 1 (1+812)

7. After this is done and using E¢30) we get that > f 1-y e apl-yly
y(2+,8/2)\;(1 _X)2y2 + X2(1 _y)2

P4(dTIJE)
aT
9E

-2+B) rxm
f dé (sin 6)1*F2
0

:AB

2 2
X exp[—%(&ﬁ(%) ]Ko[gﬁ(x,y)@—;) } (34

whereB= 2X,,3a(5+ﬁ)/ m Bl (1+B/2)]? and

aT | v f( aT) 2B
el | —|—+fglv,6,—|—-sinég
. E|ay °\oE _apXs  (1-0%1-y)?
Xf dU , gﬁ(X-Y)— 2 1 2.2 2 1 2" (35)
0 JT oT | v oT 1+B/2 :8 ( =X)7y +X( _y)
fs Uﬁ!% E a_ +1g Uﬂv% In Fig. 2 we show the result of the numerical integration
B

of Egs.(33) and(34). We observe a slight dependence@n

(33)  while theT distribution is independent of fsee Eq(22)]. In

our case, a symmetric one, the dependenceg3as not as

where fﬂ(v,0,(9T/07E):{[((9T/07E)v/a,3]2+Sin20}1/2 and A;  clearly marked as that of the asymmetric case. Also, in con-

=a P 18pm(I (1+p/2) 1.

trast to the asymmetric cage9], P4(dT/9X) diverges loga-

For P(dT/dX) one of thep’s, say p,, is easily integrated rithmically at zero transmission velocity not only fgi=1
due to the delta function factor, giving a Gaussian integraput also forg=2.
for p, which is also easily obtained. The result is substituted For large values ofdT/aq| the tails are algebraic, namely
in Eq. (31), the order of integration is interchanged to first
perform thezy integration, using an integral representation of Pg(dTlaq) = |aT/ag| 2P/ (36)
the zero order modified Bessel functiéi(x). The remain-
ing integrals, with respect te,, 7,, are transformed to new which again is in contrast with the asymmetric case where

variables to obtain that

the exponent of the algrabraic tajl$9] is —2-8.
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B. Arbitrary N N=5 N=10
] ) 900 T ] owf T T ]

For arbitraryN we are not able to calculate analytically = I L Bt 17 B=1 |
the whole distribution ofT/dq(q=E,X). Instead, we calcu- T 600 E 7 600l ]
late the first two moments of the distribution analytically for % - 1 L |
any N and complement our results with a numerical simula- ><: 300~ - 300 .
tion of P4(dT/dq) for N=5, 10. Also, we calculate the cova- < - 5 1 - 1
riance between the energy and parametric derivatives, a 0 e 0
well as the correlation of each one with the transmission 900 —— . — . —
coefficient. The explicit analytical calculations are presented« - B=2 A 900__ B=2 |
in the Appendix. 3 600~ 1 600k i

Due to Eq.(4) the transm|SS|on coefficient depends on the wﬂ - 1 L i
interference terns, S} [see Eq(A1)], i.e., linearly onS, and > 300 - 3001 -
S,, that are independent from each other but are equally™ - 1 - 1
distributed random matrices. As a result we hdsee the e R ) 0t
AppendiX (T(dT/dq))=0 and((dT/JE)(JT/3X))=0 for all XBdT/dX XBdT/dX
N. This means that, JT/JE, dT/JX are linearly uncorrelated
variables. However, in general they are correlateee the FIG. 3. Distribution ofdT/aX for N=5, 10. WhenN increases
AppendiX as happens in the asymmetric cf8]. the distribution tends to a Gaussian distribution with variance given

We find (Appendix that Pg(dT/dq) has a zero mean, i.e., by Eq.(37) for =1 and Eq.(38) for B=2.
(dT/aq)=0, as expected becauBg(dT/dq) is a even func-
tion of 9T/ dq (see Fig. 2 ForN=1, which is the case of Sec.
NI A, ((dT/d9)% diverges in both case§3=1,2). For N

(TRI). The external parameter could be, for instance, the
shape of the cavity in the microwave technique, where our
results can be testd@2].

>1 the variance ofT/dX is given by For the particular casbl=1, we calculated the distribu-
1 2(N2+N+2) tion P4(dT/dX) by reducing the problem to quadratures and
(OTIX)H = (37)  performing a numerical integration. While the distribution of
Xt(N=2)(N+1) T does not depend og, the distribution ofdT/dX shows a
for =1, and slight dependence g that is not as clearly marked as in the
) asymmetric case. Also, in our casBg(dT/dX) diverges
(ITIaX)?) = 1 N°+1 (38) logarithmically at zero transmission velocity for agy This
X3N(N? - 1) is in contrast with the asymmetric case where ferl there
is a logarithmic divergence and a cugg2. We found that
for p=2; for both cases P4(dT/dX) has algebraic tails with an exponent -8£2 dif-
X2 ferent from that in the asymmetric case.
((dTIIE)?) = e N((aT/aXV} (39 We found that/T/dq (q=E, X) depends off but the ratio
(dT/9q)/ yT(1-T) is T independent as happens in the asym-
We see that(dT/dq)?) diverges only for8=1 whenN=2. metric case. We showed thatanddT/dq are linearly uncor-
For largeN cases we resort to numerical simulations. Therelated for anyN, although in general they are correlated.
results forN=5, 10 are presented in Fig. 3 f6T/dX, and in We performed numerical simulations fbi=5, 10 to ob-
Fig. 4 for 4T/ JE where we also include the Gaussian distri-tain P4(dT/dX) and compare with a Gaussian distributions
butions with variances obtained from our results given by N=5 N=10
Egs. (37) and (38) for P4(dT/dX), and the corresponding 1000 TR T T T T 12007 T
ones forP4(dT/JE). We observe that the distribution tends S 750'_ L B=1 o00l I B ]
towards a Gaussian a$is increased as expectésee Ref. = L T . L
[19] and references thergin & s00 600 — .
As mentioned in a previous publicati¢B1], for chaotic § 5501 1 3001 ]
cavities we implement numerical simulations by generating 1 -
10* scattering matrices for eac§ (j=1,2) given by the 0 0
Heidelberg approacf80] with M =100 poles. Details can be 1000 ——— % T 1200F —
found in Ref.[31]. = 250k N s00 B=2 ]
IV. CONCLUSIONS s L 170 =
% 500 -1 600+ —
We have studied the effect of spatial reflection symmetry 1 -
on the distribution of the parametric derivativd/ X, of the & 250 - 3001 7
dimensionless conductande of a chaotic cavity, with re- 0 L 0 . (I) S
spect to an external paramebérin particular we considered AdT/dE AdTIdE

a left-right ballistic chaotic that has two leads symmetrically
placed, each one supporting propagating modes, in the FIG. 4. As in Fig. 3 the distribution of T/ JE tends to a Gauss-
presencegabsence =1 (B8=2) of time-reversal invariance ian distribution with variance given by E¢39).
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that the distribution of the parametric derivative Dtends

with variances calculated with our analytical result; we see < aT oT
towards a Gaussian distribution whBhbecomes large.

1 N
>:ReZ > [((Sl)ab(sl)a'b'>

aba’,b’=1

aq4dq’

Finally, we emphasize that our work is concerned with * «
fully chaotic ballistic cavities. Our results are consistent with X<%%> + <(51) b’?(sz)a'b’>
both experimental findings and simulatidi22]. It would be Jq aq’ P oq
also very interesting to single out the contribution of regular &(S})
orbits (see[32—-36 and references thergisomething that is X —ab(SQ)a,b, 1 (A4)
beyond the scope of the present work, since it would require aq

to modify the method here employed. whereq andqg’ denoteE or X independently. Also we have

used thatS, and S, are unitary8=2 and symmetricB=1
ACKNOWLEDGMENTS independent and equally distributed random matrices. When
M.M.M. thanks C. H. Lewenkopf and A. O. de Almeida q=E and g’ =X the result is((4T/JE)(JT/X))=0 because
for useful comments. We thank C. H. Lewenkopf for provid- the pe_lrtial derivative with respect ¥is linear in the_ matrix
ing a routine on which we based our numerical simulationsK;j Which has zero mean. The#il/JE anddT/ X are linearly
E.C. thanks his co-author for introducing him to the the ap_uncorrelated. Azgam, in 2general they are correlated. For in-
plication of RMT techniques. stance(dT/JE)*(dT/ 9X)%) # 0.
Let us consideig=q’ =X.Using the parametrizatiofi5)
and averaging oveld; andV; for g=2, or overU; for g=1,
using the results of Ref37] we arrive to

(&R +& N+ B=1

APPENDIX: MEAN AND VARIANCE OF dT/dq (q=E, x)

From Egs.(2) and(7) we see that

N % <(Sl)ab(si)a’b’> = ’ ’
=023 Re(S)af S (A1) o &N p=2

2 2a,b=1 (A5)
where we have used the unitarity condition f§rand S,.
BecauseS; and S, are independent but equally distributed and
random matrices with random phases, the averag@ ixf a(sj*) .
(T)=N/2 for both symmetriesB=1 and 2, reflecting the (S)av a =0 (j=1,2 (AB)
spatial symmetry of the cavity. IX

Let g be one of the two parametEror X in dimensionless

units. For the same reason as in the last paragraph, the av&pf Poth5=1, and 2, where we useQy,,)=0 becaus; in

age of theq derivative ofT, the parametrizatiofil6) has zero mean; while
N * * o r 0 N
aT_ 1 HS)ay IH(SDap XSS | _ (88 + & &) 2
T Ea’bEﬂ Re|:(sl)aba—qb + T)(%)ab] (A2) < aX X N(N+ 1) Zl (@t
is (dT/aq)=0. (A7)

In a similar way, after averaging the product of Eg81)  for =1,
and (A2)we get

N * o 9 a’b’
<Tﬂ>:l > Re<<sl>ab<sl>afb/><<sz>ab ) b>.

dq 4a,b,a’,b’:1 9q

WSl S\ EH Y,
< X o >- N2 El (Rua)  (AB)

for B=2. Using Eqgs(16)—(18), Egs.(A7) and (A8) can be

(A3) written as
The first term on the right hand side is real positive. gor . Vo TN
=E, the second term of EQA3) is pure imaginary as can be 9(San ! (Sarty _ 4(53 éﬁ + 52 %) S (@),
seen by substitution of Eqél5), (17), and(19) and averag- X X N(N+ 1) 1 o

ing over the unitary matriceb,, V,, and W, for =2, or N

over U, andW, for 8=1. Forq=X the parametrizatiol5)

and Eq.(16) give a result linear on the matrix, which has * 2_ <QaaQﬁﬁ>] (A9)
zero mean. ThereforéT(dT/dq))=0. Following the same wpt

procedure we expect thqT™(dT/dqg))=0 with m an integer for g=1 and

(we have verified also the case=2). l.e.,, T" is linearly . DN
<a<sz>aba<sz>a/bf> AR

uncorrelated withdT/JE and JT/dX. However, in general S (0.0, (AL0)
aa < B

they are correlated; for instance we have checked that aX aX N2 ot}
(T(dT/39)?) # 0. ,
Following the same arguments we get for B=2.
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We substitute Eqs(A5), (A6), (A9), and (10) into Eq.
(A4) for g=q’'=X. After we sum overa, a’, b, b’ the
result is

N N
2
<(07T/07X)2> = m[E <(Q2)aa> + E <QaanBﬁ>]
a=1 a,B
(Al11)
for B=1,
1 N
(19X = 5 2 (QaaQpp) (A12)
a,p
for B=2.

Now, the dialgonalization 0, Eg. (19), and the results
of Ref.[37] lead us to

PHYSICAL REVIEW E 71, 036201(2005

(T = N2—'+“1[2<f§> +(N-1(mm)]  (AL3)

for =1 and

((dTIaX)?y = (7D + (N = 1){7y7) (A14)

for B=2.

Finally, the average with respect to thevariables are
done using Eq(14). WhenN=1 only the first term of Egs.
(A13) and(A14) contribute. But,(ﬁ) diverges forg=1 and
B=2 and then((JT/9X)?). For N>1 we have

CJ2NT/(N-2)(N+D)! =1
<7§>'{2N(N—2)!/(N+1)! B=2 (AL5)
and

() =(N-1)!/(N+1)! B=1,2. (A16)

The final result foK(JT/9X)?) is given by Eqs(37) and(38)
for =1 andB=2, respectively. In a similar way we arrive at
the result given by Eq(39) for the variance ofT/JE.
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